The stabilizer of immanants

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperley-lieb Immanants

We use the Temperley-Lieb algebra to define a family of totally nonnegative polynomials of the form ∑ σ∈Sn f(σ)x1,σ(1) · · ·xn,σ(n). The cone generated by these polynomials contains all totally nonnegative polynomials of the form ∆J,J′(x)∆L,L′(x)−∆I,I′(x)∆K,K′ (x), where ∆I,I′(x), . . . ,∆K,K′(x) are matrix minors. We also give new conditions on the eight sets I, . . . ,K ′ which characterize d...

متن کامل

A2-web immanants

Abstract. We describe the rank 3 Temperley-Lieb-Martin algebras in terms of Kuperberg’s A2-webs. We define consistent labelings of webs, and use them to describe the coefficients of decompositions into irreducible webs. We introduce web immanants, inspired by Temperley-Lieb immanants of Rhoades and Skandera. We show that web immanants are positive when evaluated on totally positive matrices, an...

متن کامل

Properties of the Dual Cone of Monomial-positive Immanants

We investigate a cone in the symmetric group algebra introduced by Stembridge [2]. It is dual to the cone of monomial-positive immanants of n × n matrices with indeterminate entries. We present a new set of relations between elements of the dual cone, and use these relations to show that the cone is finitely generated for n = 6, generalizing Stembridge’s result for n = 5.

متن کامل

Complexity and Completeness of Immanants

Immanants are polynomial functions of n by n matrices attached to irreducible characters of the symmetric group Sn, or equivalently to Young diagrams of size n. Immanants include determinants and permanents as extreme cases. Valiant proved that computation of permanents is a complete problem in his algebraic model of NP theory, i.e., it is VNP-complete. We prove that computation of immanants is...

متن کامل

The complexity of the fermionant, and immanants of constant width

In the context of statistical physics, Chandrasekharan and Wiese recently introduced the fermionant Fermk, a determinant-like function of a matrix where each permutation π is weighted by −k raised to the number of cycles in π . We show that computing Fermk is #P-hard under polynomial-time Turing reductions for any constant k > 2, and is ⊕P-hard for k = 2, where both results hold even for the ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2011

ISSN: 0024-3795

DOI: 10.1016/j.laa.2011.02.029